skip to main content


Search for: All records

Creators/Authors contains: "Frankenberg, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Robust carbon monitoring systems are needed for land managers to assess and mitigate the changing effects of ecosystem stress on western United States forests, where most aboveground carbon is stored in mountainous areas. Atmospheric carbon uptake via gross primary productivity (GPP) is an important indicator of ecosystem function and is particularly relevant to carbon monitoring systems. However, limited ground-based observations in remote areas with complex topography represent a significant challenge for tracking regional-scale GPP. Satellite observations can help bridge these monitoring gaps, but the accuracy of remote sensing methods for inferring GPP is still limited in montane evergreen needleleaf biomes, where (a) photosynthetic activity is largely decoupled from canopy structure and chlorophyll content, and (b) strong heterogeneity in phenology and atmospheric conditions is difficult to resolve in space and time. Using monthly solar-induced chlorophyll fluorescence (SIF) sampled at ∼4 km from the TROPOspheric Monitoring Instrument (TROPOMI), we show that high-resolution satellite-observed SIF followed ecological expectations of seasonal and elevational patterns of GPP across a 3000 m elevation gradient in the Sierra Nevada mountains of California. After accounting for the effects of high reflected radiance in TROPOMI SIF due to snow cover, the seasonal and elevational patterns of SIF were well correlated with GPP estimates from a machine-learning model (FLUXCOM) and a land surface model (CLM5.0-SP), outperforming other spectral vegetation indices. Differences in the seasonality of TROPOMI SIF and GPP estimates were likely attributed to misrepresentation of moisture limitation and winter photosynthetic activity in FLUXCOM and CLM5.0 respectively, as indicated by discrepancies with GPP derived from eddy covariance observations in the southern Sierra Nevada. These results suggest that satellite-observed SIF can serve as a useful diagnostic and constraint to improve upon estimates of GPP toward multiscale carbon monitoring systems in montane, evergreen conifer biomes at regional scales.

     
    more » « less
  2. Abstract Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem‐scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (Ψ EWP ), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, Ψ EWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the Ψ EWP of a Quercus‐Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue‐level technique. When community predawn leaf water potential (Ψ pd ) was above Ψ EWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψ pd fell below Ψ EWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, Ψ EWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall‐induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψ pd observations fell below Ψ EWP , the forest is commonly only 2–4 weeks of intense drought away from reaching Ψ EWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom‐up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of Ψ EWP , and species in an ecosystem require compatible leaf‐level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil. 
    more » « less
  3. Abstract

    Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global scale. One proposed solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within the Climate Modeling Alliance Land model. We further investigate the possible utility of sub‐daily observations of VWC, which could be obtained through a satellite in geostationary orbit or combinations of multiple satellites. These high‐temporal‐resolution observations could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative to the currently available twice‐daily sun‐synchronous observational patterns. We find that incorporating observations at four different times in the diurnal cycle (such as could be available from two sun‐synchronous satellites) provides a significantly better constraint on water and carbon fluxes than twice‐daily observations do. For example, the root mean square error of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately 40%, when using four‐times‐daily relative to twice‐daily observations. Adding hourly observations of the entire diurnal cycle did not further improve the inferred parameters and fluxes. Our comparison of observational strategies may be informative in the design of future satellite missions to study plant hydraulics, as well as when using existing remotely sensed data to study vegetation water stress response.

     
    more » « less
  4. Abstract Remote sensing is a powerful tool for understanding and scaling measurements of plant carbon uptake via photosynthesis, gross primary productivity (GPP), across space and time. The success of remote sensing measurements can be attributed to their ability to capture valuable information on plant structure (physical) and function (physiological), both of which impact GPP. However, no single remote sensing measure provides a universal constraint on GPP and the relationships between remote sensing measurements and GPP are often site specific, thereby limiting broader usefulness and neglecting important nuances in these signals. Improvements must be made in how we connect remotely sensed measurements to GPP, particularly in boreal ecosystems which have been traditionally challenging to study with remote sensing. In this paper we improve GPP prediction by using random forest models as a quantitative framework that incorporates physical and physiological information provided by solar-induced fluorescence (SIF) and vegetation indices (VIs). We analyze 2.5 years of tower-based remote sensing data (SIF and VIs) across two field locations at the northern and southern ends of the North American boreal forest. We find (a) remotely sensed products contain information relevant for understanding GPP dynamics, (b) random forest models capture quantitative SIF, GPP, and light availability relationships, and (c) combining SIF and VIs in a random forest model outperforms traditional parameterizations of GPP based on SIF alone. Our new method for predicting GPP based on SIF and VIs improves our ability to quantify terrestrial carbon exchange in boreal ecosystems and has the potential for applications in other biomes. 
    more » « less
  5. Abstract Photosynthesis of terrestrial ecosystems in the Arctic-Boreal region is a critical part of the global carbon cycle. Solar-induced chlorophyll Fluorescence (SIF), a promising proxy for photosynthesis with physiological insight, has been used to track gross primary production (GPP) at regional scales. Recent studies have constructed empirical relationships between SIF and eddy covariance-derived GPP as a first step to predicting global GPP. However, high latitudes pose two specific challenges: (a) Unique plant species and land cover types in the Arctic–Boreal region are not included in the generalized SIF-GPP relationship from lower latitudes, and (b) the complex terrain and sub-pixel land cover further complicate the interpretation of the SIF-GPP relationship. In this study, we focused on the Arctic-Boreal vulnerability experiment (ABoVE) domain and evaluated the empirical relationships between SIF for high latitudes from the TROPOspheric Monitoring Instrument (TROPOMI) and a state-of-the-art machine learning GPP product (FluxCom). For the first time, we report the regression slope, linear correlation coefficient, and the goodness of the fit of SIF-GPP relationships for Arctic-Boreal land cover types with extensive spatial coverage. We found several potential issues specific to the Arctic-Boreal region that should be considered: (a) unrealistically high FluxCom GPP due to the presence of snow and water at the subpixel scale; (b) changing biomass distribution and SIF-GPP relationship along elevational gradients, and (c) limited perspective and misrepresentation of heterogeneous land cover across spatial resolutions. Taken together, our results will help improve the estimation of GPP using SIF in terrestrial biosphere models and cope with model-data uncertainties in the Arctic-Boreal region. 
    more » « less